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Abstract

Three primary issues will drive the design and conrail used in
next gemration reusable rocket engines. In addition to
aetdy-am and dynmc peffomum_, the _ for
increased durabih'ty, retlabih'ty and operabtety (with fsutts)
will dictate which new contmb and design teclmologies and
features will be brought to bear. An array of ceac_ts which
have been brought forward will be tested against the measures
of cost and benefit as reflected in the above "ifiticw". This

paper examines some of thz new concepts and looks for
me_cs to judge their value.

1. Introduction

Next genenttion mumble roclmt engines will be stnmgly based
on the experieme gained through the design, development.
and operation of the space ,lmttle main engine (SSM_. The
primary problems usociated wim that _ I_ be_
iuuas of durability of the hardware in partlcular of the tmbine
blades, beatings, and thrust chamber liners as well as vmioos

ducts, t_ber, refiability i,raas _m
,emors have alsobeen • problem. Many of the problems
associatedwiththe SSME have been summarized [I]. The

durabilityand reliabilityproblemswhich were encounteredin

theearlySSME expe_e_e drovea vazietyofxesearchefforts
at NASA Lewis Research Center imo variouscemtroL,

concepts to help alleviatetheseproblems. These research
areasincludedtepicssuchasintellisentcontrol,multivaziable

conUot,and lifeextending_ damage mitigatin8cootrol.

Controls derived technology may also be useful in other ways
in next generatic_ rocket engines. For example, the
techn/quas develeped for the life extendin 8 cootrol may have
great usefulness inthe design of some hardware and in the

ensineesinS of theenginemitt-up aud shut-down processes.
This approach has been called the Robust Rocket Engine

Coccept and will be included with other eoatrol concepts
covered in this paper. In additicm, earlier research in areas
such as analytical re_bmdas_ sppfied to gas _ aq_ues
may be important in the direction of future coutrols for
reusable rocla_ entries.

The selection of control c_cepts for the next generation
reusable rocket engines will be a difficult task. A mnnber of
important ismes will need to be addmm_, both at the

pmp-lsion system design level and at the ccUtrols design
level. Then issues include, a) the suitability and readiness of

the conlrol coocept to address thz problem or issue for which
they were desisned (i.e. effectiveness); b) the benefit or

impact of the coocept on steady state performance, dynamic
performance,weight of the engine and availabilityof the

enginethroughtheprepulsionphaseofthevehicle;and c) the

coatoftheeoeceptintermsoflifecyclecost,addedsensors,

addedoractuators,weightand designimpactorcomplexity.

This paper will present selected control concepts applicable to
next genenttion rocket engines and for each of these describe
briefly the concepts, the status of the technology with an
abbreviated bibliography, the expected benefits and the known
costs at this time. F_rther. the paper will explore broad issues

in selecting which if any of these concepts will be used in the
next generation mgine. Fuadly. the paper will examine
implementation issues from a hish level

2. Controls Coneepts

The controls concepts discussed in this section are not all
inclusive and largely represent the research thrusts in a
Resuseable Rocket Engine Control by the Advanced Controls
Branch at NASA Lewis Research Center over the last decade.

The Intelligent Control technology also serves somewhat as an
or_mizing (hienue_cal) structure in to which the other

concepts may be fit.

2.1 Intdllgmt Centrol System
Concept: A _mcept for an Intelligent Con_l System

(ICS) has been proposed by Menill and Loren_ [2, 3] which
cc_ists of a hieramhy of vatiouis control and diagnostic
functiemlitiesforapplicationto a reusablerocketengine.

These functiooal/ties include llfe extendi_ control,

reconfigurable con_l, real-time diagnostics, component
cooditioo numitmiag and engine prognostics. The ICS
aplnew.h requtr_ a successful numiap ben, n_a modem
conU_ and artific/al intelligence. The ICS f_amework is
shown in l:isure 1. Figure 1 dwws the ICS for only a single
en0nein alnepalsion system, l:igure 2 ,how, tbeengine
levelICS in the conte_ of athroeensineprepul_onsystemas

intheOzbitervehicle.The missionlevelcomml isthehighest

inthehi_ and isresponsibleforprovidin8 vehiclethrust

and nfixtmeratiorequirementstothepropulsionlevelcontrol.

propulsion level eoatrol is raspoma'ble for meeting
propellant utilization requlmmm_, performing propellant
tank pressure regulation (both _qu/d hydrogen and l/quid
oxygen), and 8ivin8 thrust and mixture ratio commands to



e,ch eusin_ le_,l coauol mecCaS mqetremeat,. The eesine
level ccmtrol is gespemt'ble for mtisfyiq thzust and mixture
ratio denu,_, avoidln8 ensine o0ndltlom havin8 a deUiment81

imp.or m h_wm du_,m_, .ffit ,_osnmodet_ enS_
compeoent tin.soft faults. As shown in the fiSure,
requiramen_ flow down in the hle_ and status
information for deciJi,',- making flows up.

The real-tlme diasno_c system included in Figure 1 consim
of _mor validation, model based failure detecti_, rule based

failure detectiea, and the diqnouic expert system. These

functions, descn'oed below, are all part of a rind-time
distributed a.-chitecture for diasnostics and are zwpoam'ble for
ideotify_ md bolsenS ,-y ch,o_deSra_oa tu enS_
valves, semon or c_nts. The ensine level coordinator
makes alteratlcms to the control usinS ensine ,tams
information 8eoemted by the dlqno, ec system, and
pn,pu_ea requimme_ provided by the _oa revel
ceatroL The recoufiSurable ceetroller takes zequests

Seomted by the eoord/mtor, mak_ tbe ,:han_ sraduaUy
thereby ,,,,,,i,,,_,_i,_. eaSisn tnmieats, and comlm_ the valve
positions to sctdeve the requested behsviar from the rocket

eoslm. AUo_miom .t t_ _ _v_ mumbe _ffimd

_ only for tho di.,_ cootrol loop which ls _
of semef validetims and reconfigumble ccatroL Other
operati_ inch -- deeia'_ ma_ag in the coordinator may
take lonser but must known and small relative to the failure
development rate.

Status: For an ICS, wozkable framework mchitectures

have been established [2,3,4]. The primary functiomdities of
multivarisble coatrol, semor validetio_ failure detectiou,

dlapso_cs and coordination have been demoasrmted by
stimulation to evaluate ICS peffonnmwe. Tbe ICS _
has been developed md applied to the .q,qME by ,dmulation to
evaluate ICS perfoanaoce, The above fm_domdtitiu have
been demomUated to mine extent by simulstion [4.5,6,7].
Both the multivatlable and the llfe extetaJ_ _1

components will be discussed furd_ in later sectiom.
Sinndatton result, for the three ensiae propebi_ system have
also 1_ ecbiq_.d and m _ve_ in [4].

A, an illustrative example, t pmpul,im level, dmnaSe
_ coat_ is ,tudied. "t'm,pmput,ion ,y,_,m comi_
of three separate, nominally identictl eaSinu whlch need to
be coordinated to sire the desired thrust as determined by
mimon zequizemen_ Tbls coordin_m is aocompllshed at
the pmpalsloa level Infonmt_n on the thml and tbe current

life status of each ensine are tnmmnltted from the ensine level
to the propuhdo_ level. Each of the enSines has its own,

level Each _ in the prolmlskm symm caasists of • fuel
_, ,,,, oxidizer turbepun_, and • main combusti,'-
chamber. 'the _ eomist of a prebumer, bumiee,

md pump. l_el and oxldize_ am bumed in the Inebumm.
The hot sa. Senmted in the pn,bumm drlve the mrb/ne,
wh/ch in mm drive the pumps. The fuel and exidizer

di_.harse temperatures, T(YI2d and TF/'2d req_veiy,
represent _ indicators of e_gine health. A simplified

life model u,lnS the tenq_rature- to compute • zelttive
dmnaSe n_, D, fo_ me asSlne is q, pmxin_ed u

D__d-'I'FF_TO'_d-TO'I_)+k_

whe_ thek'saracomtants,TO'I_ and _ arathefuel

and oxidizer turbine nominal discharge temperatures
zespectivel,and P isthrust.Ina _oss lense,if eitherofthese

t_s rise above a nominal level, the ensine has
deKmded and has leu useable life t_uin _. Tbenomina[
di_ temperatum_would be• functie_ofthepowe_ level

of the mqgine. Thus, if the ensine rum '_ot" at any power
level, e._ _-'I'F]_ • 0, damage will accumulate faster
than tin nomin_ demase mte.

The propulsim level cce3trol has two goals, 1) control
individual eai;izn tlmms to be equal to the veblcle thrust
command, and 2) fmce the individual ensixn damase rates to
be as nearly equal u pore'hie. Here the thnm from each
enSine is added to 8ire • vehicle thrust meamnemem for
c_ with ebe deeired vehicle dmsst. Aim, the demase
rates are combined lkamdy to autmnafically adjust individual
thrust cemmms_ to the eqls_ level ceaUols to achieve equal
demase rate for each eusine. Example x_ults a_ 81ve_ in
Pi_xre 3. Here, there is • requested increase in vehicle thrust

at t=0 sec. to whkh the pn:_:ulsim ,ystem req_mds.
Addltimmlly, it is assumed that ensine #3 degradeslinearly
mu_nS at t=- t, _ch that

_TeT2d,,=k(t- t,) • 0

wberak isa comtanL Betweentland t_thecootrolachieves

_d dm_ nm fer e.ch en_e whee _ tbe
vehicle thrust level. This is achieved by a downlhml of.
eagine #3 stud sa upttmsst of ensinu #1 msd #2. At t = t_
ensines #I and#2 mat tbeir ma.nimum thrust levels and tbe
depadation of ensine t_ can no loopr be mitlpted without
reducing the vehicle thnnt level. Therefoze, between t_ and t,
engine #1 and #2 ttnust levels remain consts_ and the #3

dem_q_ ra_e_ beyood fl_e#I and _ leveis.A_ t_the
mission commanded vehicle thrust is reduced mgl the

propuMc_ level imtdeme_ the reductieu usin 8 c_ly
t_,thee_e _ thehtshe,tlevelofUteu_se,entt_

t, wb_ tl_ _8_ r_ m_ _ e_pmL B_wee_ t, amd g_
the _ _ _ _ is imp_,_d by
thrust _luctic_ in all three enSlne, that result in equal
damap rat_. At t, e_qdm #3 is at its mlnimum thrust ,,,d
cau no longer be downthrust. Since the ensine contitm_ to
degrade, for each event in the _imulafi_ scenario, the

prepulsie_levelcomdinatorcommands theindividualensine

thrustlevelsto value_thatminimize ensinewear rateand

risk. asdefined by the damaSe rate modeL,within the minion
level and ensine level constraints.

Results achieved in the area of diasnostics include failure
detectiea uq model-based alsodthms , expert systems and
neural netwoduc The detection of actuator faults using model

based alsodthsm was demomtrated [8]. An expert systems
approegh was uaed to detect problems in the seal systems of
the hish presmre oxidized turbopum_ [9]. Fuudly. • neural



networkhasbeendevelopedto validatesensorinformation
andidemifysensorfaults[10].

Benefit:An ICSwill extend ensine llfe and allow

useful, desreded peformance in spite of component failunes of
• reusable propulsion system, which may include multipLe
engines. This is accomplished by intelllseut control of engine
opera_oll to achieve IP.is_c_ objectives while m;n;mi'in S
e_ ma/_mu_ .ad maximiz_ _ U_e ,nd
performance.

Cost: The increased capability of the ICS will require

impmved algoritlmw aad eddltlmud insmunentation aad
improved actuation hardware.

Assessment: CMsrenfly, most of the ICS primary

function could be incorporated into a next 8eneration

propulsion system Due to the inherent modularity of the ICS,
a building block approach could easily be adopted. Modules

n_re_.asin8 _titional _actiomfi_ or edd_ion_ capat_i_
within a function, such as coverageof eddifional faults,canbe

edded as time mxt cost permit, h is msficipsted that the cost
of the additional complexity inherent in this additional

capability will be more titan offset by decreas_ life cycle
coat.

2.2 Multfvar/able Control

Concept: Conuol systems for liqu/d propellant rocket

engines huve focused on single loop control designs to date.
The mawhs of this Wpmsch ate mnpUcityin de,isn ,_t
implementation, low sensing n_luinmm_ and fmnifiadty.
However, mulfivadable control design offers much greater

oppmmnity for accurate cosstrol of the enSlne cycle in a liquid
_opeU_t roc_ _.

Rocket ensine control is inherently a multivariable problem
because both mixture ratio and chamber pressure must be

accurately cmmolled sinmltaneously usin 8 two or more valves
which resulatetheamount of fueland theamount of oxidzer

emering the comlmsticu process. Moreover, ln'opeHent
control valves are often available to reSulate the coolin 8 flow
around the main combustion chamber and nozzle. Addifiomd

valves may be added if independent control of crific_d
te__ is necesmu7 to reduce the dsk of a redline
dmtoff durin8 off-nominai ccmdifions [17,18]. Multivariable
des/Sn methods provide the necessary coordination between
flow control valves to meet closed loop specificaticm using
some subset of the semor suite. In a mulitvariable setting, the

pofonnance specification may be very sophisticated and
include rate limits and energy constraims on propellant
_1 valves, command foliowin8 of critical

parameters which conespmd to pefonnance and life,and
minimum rolmstness criteria to handle seosor noise, off-

nondnal operation and inaccurate modelllns.

Status: Both LQG/LTR and H-infinity multivariable
desiffa method, have been applied at NASA Lewis to the

Space Shuttle Main Ensine (,f_ME) for clotted loop control.
A design method usin_ _TR was developed for the
Nrvo.compemator and applied to the SSME for trackin8

command, of chamber pressure, mixture ratio end high

premsre fuel and oxldzer turbine discluu'p tempereture [7].
Simulstion of the SSIVm MVC hus been conducted usi_ the
nms-linezr real-time e_ine model developed by Rocketd_

for testin8 SSbll_ con_oller ha_wsm [19].

Several software tools ate now available for computer aided

deaisn of em_rol systems and axe complete with block
diagram-likemodelling,desisn,analysisand real-timecode

generation features.Mulfivariable controlhas never been
more acem'ble for application to liquid propellant rocket

msine control However, severalchul/eoses remain in
developin8 practical multivariablerocketensine controls.
Valve hyst_zsis and mturaticts are difficult problems to
bsndle in a multivm'iable _ and require compficated
schemes to maintain stability with a subsequent loss of

perfonnsace f_srm_es. Loss of valve effectiveness under
reduced flow ca0difions results in extremely nonlinear

behavior over the entire operatin8 envelope. Diffi_alty in

_ and aemators due to the harsh eavixemnent
resultin rims-minimumphase zerosfor example. Detailed

nonlineartnuiem models are necessaryfor controllaw

developmentandcan oftenbe quitedifferentfrom themodels

required for hmdwswe in the loop evaluation. The above fist is
by no means exhaustive but presents some of the impmcsm
issues to be addressed in de_'einplng a ln'actlcal mulivarisble

rocket engine control

Benefit: Multivadable ctmt_l is paxti_alaxly well suited

to rocket control because the ensinos are treditiomdly open

loop stable with few changes in powe_ leveL Consequently, a
relatively small numl_r of lineardesisn pointswill be

required to provide accurate control over the operafi_
envelop. The thrust profiles are well defined a priori and
limited in mmber _ for optimization to minimize

_ _mase m_ _ _oanance. Ttz _-ol
Inoblem falls naturally into a ses_onsochunism framework for
command following of cdtical _ parameters for
enhancedenSinelifewishonta loss in e_ae perfonnawe.

To illustrate, a multivadable desisn method [17] is sppfied to

the SSME for closed loop control from 65% powe_ to 100%
or rated power. The control objective is extended from
_1 of clbmnbor presmsre and mlxtu_ ratio to include the
disclmr_ tempegatm_ ofthehiSh pressure oxidizer and fuel
turbines. Toward this end, m additional valve is added to

regulate the fuel flow between the fuel and oxygen pretmmers
of the stased condmstion cycle (ie. the oxidizer prehumer fuel
valve). Hence, the oxidizer ptetmmer oxidizer valve, the

oxidiz_ _ fuel valve, the fuel prebumer oxidizer
valve and the coolant control valve are used to provide

command Uack_ the aforementioned enSine parameters

[17].

Benefitsof the multivariabledeaign and the additional

actuatoram shown in Pigure& Each figurerepresentsa

re,on ofcomrollabilityofboththehishp_uure fuel turbine
dlscharse teaq_eramm (Tl_'2d) and the hish pressure oxidizer

discharge t_nnperatum ('lX)_d). The data in each
figure is generated using the teal-time rocket engine model
[19] with a single desisn point (rated power) linear
mulfivariable control (MVC) developed in [17]. The upper



limitcatherellimxof cmmellabttityis computedforeach
sirenpowerlevelbyselecti_asetpointforTPT2dandthen
inemaJln8thecommand for TOT2d until under damped
osciUatiem occur in any of the _ed pmmneters. A
similar procedure is used to generate the lower bound for each

of the power levels.

Figure 4a show= the resien of cemmllability of the high
premue mzbine discluup tempezzmz= at rzu=dpow=r. The
SSME zedline limit- are provided for reference for each biSh

pressure turbopump. The MVC pm_ides a fairly broad nmge
of temporatu_ cmm_ of the _ at rated power. The
_mller is capable of takin8 'FFF2d to redllne but not
TOT2d. 'l'be _lled mmdy-state temperaturus ach/eved
with the current SSME _ (Block I cmnrol) are

ind/cated in the figure. The Block I tempemnnes fall along
the mininmm temperature curve for the t_amw-l_e_. This

isnot surpfish_ since the ensine is _ for rated power

opez_o_ The MVC Wovides the oppo:ran_ for .lidins
along this minimum temperaturecurve to dange the
tem_eram_ d_r_ufion accmn the _s. l:igme 4b
dwws • similar analysis at the 80% power level, The
uncmUolled steady state temperatur_ with the Block I
cmtrol are severalhundred degreesabove the minimum

tempentmrecurveforthe_ ,usgestin8thattbe

t_ could be reduced at this power level if desired.
Recall that no w.bedulin8 of the MVC is required in the
results shown ss a sin81e point dmisn is used fzom 659_ power

to 100% power. Fuudly, at 65% power (mintmmn power) •
,imilarresionof cmtrollabih'tyis sazrated as mown in

l:isure4c. The uncontrolledtempenmuu resultsfrom the

Block 1 controlam nearlyin the ceaer of the resie_

suSgestin8 considerablefle_u'bilityin the temperature
d/stributionsscexmsthenubmach_ry. Mme wodc isneeded

to determinean operatinsstratesybased upoa thisadded

cspabil/_ for the SSME across all power levels. Addifiomd
flexlbifity may be realized if multiple poim cm3tml desisn are

used in c_cn with • ,chedul_ policy

Ceet:"The developmentof • multivariablecontrolfor

ro_m _m requlm, deudt_ mod_ of _ a,Si_
_e. A_ _q=_t_ _etr_t ob_e_ _or_ _ r_
analysis and testin K to fully umdermnd the pros and cons of

the _ matesy md it, effect en the ensine r_tem fi'om
-,eosine_ .ad__ve. An
expanded tee/re4 strategy will result in a more complex
cemrol law wlich is harder to vatidate, implement and

typically requL,_ a faster ssmp]in 8 rate. More seam, s and
actuators may be desired and could adversely affect the
overall system reliability if algorithm, for ssmor fault and
actuator fault accommodation are not included in the control

architectunD.

Asemmmeat: Multivaziable comrol has matured to the

where appilcafion to complex problems is tractable and
cost effective. A diversity of algoz_thms are available which
address a broad range of issues involved in the development

of alSorieum f_ reumble rocket en8ine cemxoL Software
tools are available which allow rapid pa_tot_q and

geoera,/on ofreal-time code to _ the implennmtion
process and provide • strais_-forward means to track the

code. However. implennntation issues remain which must be
addressed such u actuator saturation, pin ,¢beduUns and
controger discret/zatiou.

2.3 Life Extemlf_ Coatroi

Concept: The fundsmm_ idea of Life Extending (or
D,um_ Mi,iSatinS)C_au_ (LEe) [11.i2.131 _, e=t the
amount of damage accumulatedat criticalpointsin the

pmpul,ion mucture dudn8 usmieut operatiaamay be

submmliaUy reduced by careful coatrol dur/nS then periods.
The Fbilomi_ is to feedbeck the dm_ge rates at critical
PO_D in the pmpedmo- sylem, Ry at tl_ nubix_ blades and
coolln 8 jack_ walls and thlouSh _ op¢imizsfi_ to use
that _on to minimize dama_ at them points while

.imultaneou.ly _ dynam/e _. Two type, of
damages are cemidexed for the remesble rocket engine.

fat/Soc/hactu_ and creep. To incorporate fatigue/fracture
requires • _a_uum time bsse damage theory as opposed to

the W._dificml cyclic based damage laws.

Status: The above concept has been developed in some

detail for 8pplic_m to reuNable rocket ensines (SSME-like).
fatigue damage models suitable for ce_rols

studies have beeu developed [IZI4]. Optimizatie_ methods
have beeu spplied to detailed nowlinear mudatiom. The
studies to this point have been primazily open loop. That is,
valvepositieu,equeacesto taketheeusinethrmssh• =ep
cbenseinthrusthave been optimizedforminimum damage

andmaxinnun _. Thue smd/eshavebeen done bassd

on fatiguedamage only [15].withfatisueand creepdamage

[16] md sll with ymious levels of initial dmmt_. The mtte-

of-tbe-zrt does not allow direct sensin8 of damsge, however,
zesearch [14] Ires dzown • stun 8 nc_-linear ralatiomd3ip
between local stzess and damage rate. This stress level.

throush au approp_l_ nen-Liocar _ter, can be used as a
damage rate feedbec]c

Benefit: Results for a commanded step increase in thrust
for a zeuseable rocket ensine cem/de_h38 02 & H2 turbine

blade fafisoc damage only [15] are shown in Fisure 5. The
result, mow the _ (ram clZimlzed) accumulated

damage thmush the trmslent to be thn_e or more times that
achieved with I.XC. The zefemuce ix,per deudls how these
results were sch/eved. When creep damage is included

.imilar tnmie_t p/nscmbe shown. However, creep damage
dm_8 the steady part of the misshm may domimte. (_='reot

efforts are directed to achievin8 improved result,
whileshiftingf_mn m_ open loop to • closed loop cootrol
structure.

Cost: Aside from enl_eeri_ costs, the ps'imm7
opera_oual cost for LEC is _ compmmlm. 'lois
ammmes that ms will not be dhoctly memued but in_erred
from • mocmnd estimator and further that damage rate will
be calculated from infened local stress and temperatun_. The

altemat/ve would be increased ssming. The cost in the desisn

phase is the currem requ/mnem to uss nonlinear olxim/zaU'on
for at least pan of the ce_roUer demon. _ research
efforts may simplHy or elim/nate this requflement.



Aamesuamt:With modest additimal research to

simplify impl_cah LEC can be ready for use for next
geneneicm reuseable rocket engines. While it is difficult to

predict in advance where the critical damage locatiom will be,
it is probably a safe aasumptica that turbine blade roots and
thrust chamber cooling jacket walls will cootinne to be

problematic. Experience has shown that a comrol that
damage at these points will likely reduce damage

smmny in es..asin..

2.4 Rebw RedKet_ cee.apt (RREC)
Ceacq_: This recent concept [20] is an outgrowth of the

work done ea I.EC. F.rom the SSME experience it is known
that nmch of the damage per flight is aceunmlated drain 8 the

start-up and shut-down tramients, the application of damage
miaimizaa'_ (fima LEC e.caa:ept) during these periods

together with design aspects can potentially yield dramatic
inq,roveme_s in easim _u.abitity. The design
include nmlfidi_-iplinasy optimization of the operating cycle
(in a new design) as well u aero-_mcmnd epthntzation of
critical compoueats such u turbine blades, coolin 8 jacket
liners, etc. The approach may also include emm_lled or

_y ceaumlled start up and slant down tramients. A high
level view of the desisn process is shown in the flowcha_ in

Figure 6.

Status: The ctawept has only recently been formulated.
There have been no detailed studies performed.

Benefit: The benefits at this point are putontiaL Since
LEC has shown the ability to reduce fatigue damage through
transle_s to less than 1/3 of that which would normally be
see:h RREC would appear to have the potential of an order of

magnitude or more durability improvement. A very attractive
feate_ of this atpmech is that it provides a focussed unified

slobal _each to the deign process for the engine _stem.
That is it creates a clear measure (criterion of goodness)

against which decisicm to include or exclude various design
features may be made.

Cost: The fundamental cost of this approach is increased

computaficm drain8 the design process. The evolved desism
may also have mildly penalized dynamic response and
prupell_ uuge.

Assessmout: The Ininuu'y analytical tools are available
to implement this concept; these ate a useable simplified
confin_ damage model and nonlinear optimization tool.
The issue my he industrial readiness.

7..q Issues

Engine (and controls) designers for next generation reuseable
rocket engines will be faced with the problan_ of deciding
which if any of the above control eoncepta will be
incorporated. As pointed out in the introduction, technology
readiness, benefit and cost will dive that dacisiou. Mission

importance will also influence which technologies are applied.

Key issues that will be compared for the teclmologies are:
msmber of seniors required (how much information required).

what type of sensor, location in the engine, munber of

actuators required and their location in the cycle, and finally

the computational burden. Clearly, the impact of added (or
removed) components on system reliabih'ty need also be
evaluated.

There is little theoretical guidance on the number of semen

and actuator required, the concepts of observability and
controllability am useful but don't realJy do the job in a
practical sense, especially for • nonlinear plant. Pedmps new
or additional theory is required here. The computational
burden may be estimated and reliability effects may be
evaluated siren eomtxmont reliabih'ties. The effect of the
control algorithms, for example Intelligent Control, on system

reliability will also need to be assessed.

Semor Requirements: There is a current thrust in
aeroprcpulsion to reduce the numbers of sensors used for
conlzol, while at the same time the expectations from the
controls system are increasing. This may be an anomalous
situation.

Clearly, that feedback sensin 8 is used at all is motivated to
account for system dismdamce (aud load) as well as changes
in the plant. These changes may come from system
degradation and are assumed parametric rather than structund.
There is clear need for an analytical (practical) test that can be
applied to nonlinear systems or simulations that will indicate
if too few sensors or sensors of too low an accuracy have been

chosen. This can be time or fiequencybased. Thetest may

be implememed analytieaUy or by simulation.

The minimum sensor set needed to satisfy such a test

however, may not be adequate for other aspects of controL
For example, if a model based ccce_rol is the approach of
choice, El if the model is to be upgraded to respondto plant

desradaficax, the semor requiremeats to adequately identify
the plant in the allctted time (or samplings) and over the
selected operating domain may require an additional test.
Further, if sensor failure is to be accommodated in a system

usin 8 a method such as analytical redundancy then either
more semors or a reduced tolerance win be required. Fmaliy,

for intelligem control systems where decisions will be made
by the control to accommodate physical changes in the plant a
minimum set of diagnostic semors must also be identified.

Aemator Requh'emonts: For reusable rocket engines
actuator requiremea_, i.e., namber, location, bandwidth and
resolution are usually set in • more or leas ad hoc way

(usually by the engine designer). Minimum actuator
reqeiremm_, here nnmber and location, are determined by
the number of primary engine vsfisbles to be independently
_'oUed. Usually tl_ level of capability is estabfiahed (or

specieed) ,ha_s the _]e an_y,is _ of the msin_S
typically uot involving the controls designer.

If this is _ as • base referencepoint, then the decision
to add more actuators will be based on the increased

functionality the actuator allows. Then a simple cost/benefit
ratio analysis can guide the decision. For example, an
addltieml actuator will allow the reduction of turbine inlet

temperature and hence mrbim life extension [15]. The trade-
off hem is relatively straight forward. As a further example,



occa_msllythe addiflm of an actuator of -,, increa_ in
band,,,_h of aa ea_tias actuatorwillallowthe systemto

operateina dmuin thatwe_d otherwi_be unstable.Inthis

cue tm_ted perfounan:e 8tim may justify the _lditi_

& Coadud_s Return-ks

1_i, peper h_ j_emed • cro_ a_ion of cun_t cuZrob
_molosy rema_ epplictbb to next Smenaion mumble
roc_ anSlne _mroL The _ di_um_ 8z_w out of the
NASA l.ewb _ to reJpmd to durability l_0blems

covered i_le: _ _l, Mulfivariable _,
Life _mdiM Coc_oL md a _ea_x f_ ec_i_ ma_-up md
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